1089

## Structure and Fluxionality in the $PF_{6-n}(CN)_{n}^{-}$ and $PF_{3}CI_{3-n}(CN)_{n}^{-}$ Series

## Keith B. Dillon\* and Andrew W. G. Platt

Chemistry Department, University of Durham, South Road, Durham DH1 3LE, U.K.

Several new ions in the series  $PF_{6-n}(CN)_n^-$  and  $PF_3Cl_{3-n}(CN)_n^-$  have been prepared, and identified by n.m.r. spectroscopy; some species with three or more fluorine atoms present are fluxional at 307.2 K.

The only reported six-co-ordinate phosphorus(v) anion containing both fluoride and cyanide ligands is  $PF_5(CN)^-$ , formed by reaction of  $PF_5$  with cyanide ions.<sup>1 19</sup> F N.m.r. parameters were measured for this species in  $CH_2Cl_2$  solution at 178 K, at which temperature it was stereochemically rigid.<sup>1</sup> We have prepared six-co-ordinate anions of the types  $PF_{6-n}(CN)_n^-$  (1  $\leq n \leq 4$ ) and  $PF_3Cl_{3-n}(CN)_n^-$  (1  $\leq n \leq 3$ ) by a variety of routes. Reaction of PF<sub>5</sub> with Et<sub>4</sub>NCN in  $CH_2Cl_2$  gave  $PF_5(CN)^$ and  $PF_6^-$ , while  $PF_3Cl_2$  under similar conditions yielded an isomeric mixture of  $PF_3Cl_2(CN)^-$  ions. Treatment of a *cis/trans*- $PF_4(CN)_2^-$  and some  $PF_6^-$ , while a *fac/mer* mixture of  $PF_3Cl_3^$ ions<sup>3</sup> reacted with an excess of LiCN<sup>4</sup> to yield a single isomer of  $PF_3Cl(CN)_2^-$ . *mer*- $PF_3(CN)_3^-$  was formed as the major phosphorus(v) product from the exchange reaction between  $P(CN)_3$ 

| <b>Table 1.</b> <sup>61</sup> P N.m.r. data for $PF_{6-n}$ (CN) <sub>n</sub> lons in CH <sub>2</sub> C | ſable | 1. <sup>31</sup> F | ' N.m.r. | data | for | $PF_{6-n}$ | $(CN)_n^-$ | ions | in | CH <sub>2</sub> C | $\mathbb{C}l_2$ . |
|--------------------------------------------------------------------------------------------------------|-------|--------------------|----------|------|-----|------------|------------|------|----|-------------------|-------------------|
|--------------------------------------------------------------------------------------------------------|-------|--------------------|----------|------|-----|------------|------------|------|----|-------------------|-------------------|

|   | Ion    | <sup>31</sup> Ρ, δ/ | p.p.m.ª   |                      |                       |
|---|--------|---------------------|-----------|----------------------|-----------------------|
| n | Isomer | Observed            | Calculate | de Multiplicity      | $^{1}J_{ m PF}/ m Hz$ |
| 0 |        | -145.1              | - 144.6   | Septet               | 714                   |
| 1 |        | - 157.7             | -158.4    | Sextet <sup>b</sup>  | 744                   |
| 2 | cis    |                     | -184.3    | Quintet <sup>b</sup> | 753                   |
|   | trans  | -172.6              | -172.1    | Quintet              | 741                   |
| 3 | fac    | -225.5              | -222.4    | Quartet              | 744                   |
|   | mer    | -210.5              | -210.2    | Doublet of triplets  | 780(d),684(t)         |
| 4 | cis    |                     | -260.5    |                      |                       |
|   | trans  | -250.7              | -248.4    | Triplet              | 853                   |
| 5 |        |                     | -310.8    |                      |                       |
| 6 |        |                     | -373.3    |                      |                       |

<sup>a</sup> Downfield from external  $H_3PO_4$ . <sup>b</sup> Fluxional at this temperature (307.2 K). <sup>c</sup> F: F -12.05, F: CN -15.49, CN: CN -31.11 p.p.m.

and  $PF_3Cl_3^-$  (ref. 3) in  $CH_2Cl_2$ , together with  $PCl_3$  and smaller quantities of  $PF_4(CN)_2^-$  and  $PF_2(CN)_4^-$ . A fac- $PF_3(CN)_3^-/PF_6^$ mixture was produced by oxidation of  $Pr_4N^+PBr(CN)_3^-$  (refs. 5 and 6) with  $SF_4$ . All the cyanofluorophosphate ions gave intensely red solutions in  $CH_2Cl_2$ . The ions  $PF_3Cl_2(CN)^-$  and  $PF_3Cl(CN)_2^-$  were isolated as their  $Et_4N^+$  salts, which gave satisfactory elemental analyses.

<sup>31</sup>P N.m.r. data (307.2 K) for  $PF_{6-n}(CN)_n^-$  ions in  $CH_2Cl_2$ are given in Table 1, while <sup>31</sup>P and <sup>19</sup>F n.m.r. results for  $PF_3$ - $Cl_{3-n}(CN)_n^-$  ions are presented in Table 2. Isomeric configurations in the cyanofluorophosphate series were readily assigned by the method of pairwise interactions;<sup>2,3,7-9</sup> the calculated chemical shifts are included in Table 1. Of particular interest in this series is the sharp division between stereochemical rigidity and fluxionality on increasing the number of F atoms in the complex from 3 to 4. Similar trends have been observed for the  $N_3^-$  and NCS<sup>-</sup> substituted chlorofluorophosphates.<sup>3</sup>

All three isomers of PF<sub>3</sub>Cl<sub>2</sub>(CN)<sup>-</sup> were present in the solid



| Ion                        | <sup>31</sup> Ρ, δ<br>Observed | /p.p.m.<br>Calculated | Abundance/% <sup>a</sup> | <sup>19</sup> F, δ/p.p.m. <sup>b</sup><br>(unique F) | $^{1}J_{\mathrm{PF}}/\mathrm{Hz}$ | <sup>19</sup> F, δ/p.p.m. <sup>b</sup> | $^{1}J_{\mathrm{PF}}/\mathrm{Hz}$ | $^2J_{ m FF}/ m Hz$ |
|----------------------------|--------------------------------|-----------------------|--------------------------|------------------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|---------------------|
| (1) <sup>c</sup>           | -180.0                         | -180.4                | 70                       | 12.2                                                 | 1010                              | -17.6                                  | 810                               | 91                  |
| (2)                        | ∫ 167.2                        | -164.0                | 15                       | -6.8                                                 | 835                               | 27.3                                   | 925                               | 65                  |
| (3)                        |                                | -159.5                | 15                       | 16.2 <sup>d</sup>                                    | 940                               |                                        |                                   |                     |
| (4)                        |                                | -201.5                |                          |                                                      |                                   |                                        |                                   |                     |
| (5)                        |                                |                       | 100                      |                                                      |                                   |                                        | <b></b>                           |                     |
| (6) <sup>c</sup>           | -190.4                         | -185.1                | 100                      | 1.8                                                  | 905                               | -9.3                                   | 791                               | 73                  |
| $mer-PF_3(CN)\overline{3}$ | -210.5                         | -210.2                |                          | -9.6                                                 | 780                               | -40.8                                  | 684                               | 34                  |
|                            |                                |                       |                          | _                                                    |                                   |                                        |                                   |                     |

Table 2. <sup>31</sup>P and <sup>19</sup>F N.m.r. data for  $PF_3Cl_{3-n}(CN)_n^-$  in  $CH_2Cl_2$ .

<sup>a</sup> Estimated from <sup>19</sup>F n.m.r. spectra. <sup>b</sup> Downfield from CFCl<sub>3</sub>. <sup>c</sup> <sup>19</sup>F N.m.r. spectra analysed as AB<sub>2</sub> part of an AB<sub>2</sub>X system. For other spectra first order analysis sufficed. <sup>d</sup> Fluxional.

isolated from the PF<sub>3</sub>Cl<sub>2</sub>-Et<sub>4</sub>NCN reaction. The most striking feature of these complexes was the observation that two are stereochemically rigid while the third is fluxional at or just above ambient temperature, lines in the <sup>19</sup>F and <sup>31</sup>P n.m.r. spectra being sharp for all species. Clearly the energy barriers to non-rigidity depend critically on subtle variations in structure. The most abundant isomer (non-fluxional) was assigned structure (1) on the basis of the pairwise method (Table 2), but an unequivocal assignment of resonances to structures (2) and (3) cannot be made, and we are unable to say which of these isomers is fluxional.

The single isomer found for  $PF_3Cl(CN)_2^-$  appears from the calculated shifts to have a meridional arrangement of the fluorines, *i.e.* structure (5) or (6) rather than (4) (Table 2). Since two CN stretching bands were observed in its i.r. spectrum, structure (6) seems probable, even though numerical agreement with the experimental shift is better for (5). We have found previously that the pairwise treatment does not hold too well for chlorocyanophosphates(v),<sup>2</sup> possibly because of distortions from regular octahedral geometry.

An interesting parallel exists between these complexes and the chlorocyano- and thiocyanato-phosphates,<sup>2</sup> in as much as certain types of reaction tend to yield products with a specific stereochemistry. Thus oxidation of a phosphorus(III) species leads to a predominantly facial distribution of ligands in  $PF_3(CN)_3^-$ , analogous to  $Cl_2$  oxidation of  $PCl(CN)_3^-$  (ref. 10) which gave mainly *fac*-PCl<sub>3</sub>( $CN)_3^-$ ,<sup>2</sup> as well as the  $PF_3/Cl^-/Cl_2$ reaction which produced *ca*. 75% *fac*-PF\_3Cl\_3^-.<sup>3</sup> On the other hand, ligand exchange reactions between phosphorus-(v) and -(III) compounds appear to favour meridional isomers, as exemplified by reaction of  $PF_3Cl_3^-$  with  $P(CN)_3$ , and of  $PCl_6^-$  with  $P(NCS)_3$ .<sup>2</sup> Substitution of Cl in a phosphorus(v) species by metal cyanides also seems to lead preferentially to *mer*isomers, since a single isomer of  $PF_3Cl(CN)_2^-$  is formed with a meridional arrangement of F atoms even though they are mainly *fac* in the starting material, and *mer*- $PCl_3(CN)_3^-$  is the main product formed by substitution into hexachlorophosphates.<sup>2</sup>

We thank the S.E.R.C. for the award of a maintenance grant (to A. W. G. P.).

Received, 1st June 1983; Com. 696

## References

- 1 P. J. Chevrier and S. Brownstein, J. Inorg. Nucl. Chem., 1980, 42, 1397.
- 2 K. B. Dillon and A. W. G. Platt, J. Chem. Soc., Dalton Trans., 1982, 1199.
- 3 K. B. Dillon and A. W. G. Platt, J. Chem. Soc., Dalton Trans., 1983, 1159.
- 4 H. D. B. Jenkins, K. F. Pratt, and T. C. Waddington, J. Inorg. Nucl. Chem., 1977, 39, 213.
- 5 A. Schmidpeter and F. Zwaschka, Angew. Chem., Int. Ed. Engl., 1979, 18, 411.
- 6 W. S. Sheldrick, A. Schmidpeter, F. Zwaschka, K. B. Dillon, A. W. G. Platt, and T. C. Waddington, J. Chem. Soc., Dalton Trans., 1981, 413.
- 7 T. Vladimiroff and E. R. Malinowski, J. Chem. Phys., 1967, 46, 1830.
- 8 J. S. Hartman and J. M. Miller, Inorg. Chem., 1974, 13, 1467.
- 9 K. B. Dillon and J. M. Miller, unpublished work.
- 10 K. B. Dillon, A. W. G. Platt, A. Schmidpeter, F. Zwaschka, and W. S. Sheldrick, Z. Anorg. Chem., 1982, 488, 7.